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Molecular Partition Coefficient from Machine Learning
with Polarization and Entropy Embedded Atom-Centered
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Efficient prediction of the partition coefficient (logP) between
polar and non-polar phases could shorten the cycle of drug
and materials design. In this work, a descriptor, named
⟨q−ACSFs⟩con f , is proposed to take the explicit polarization
effects in polar phase and conformation ensemble of energetic
and entropic significance in non-polar into considerations.
The polarization effects are involved by embedding the partial
charge directly derived from force fields or quantum chem-
istry calculations into the atom-centered symmetry functions
(ACSFs), together with the entropy effects which are averaged
according to Boltzmann distribution of different conformations
taken from similarity matrix. The model was trained with
the high-dimensional neural networks (HDNNs) on a public
dataset PhysProp (with 41039 samples). Satisfactory logP
prediction performance was achieved on three other datasets,
namely, Martel (707 molecules), Star & Non-Star (266) and
Huuskonen (1870). The present ⟨q − ACSFs⟩con f model was
also applicable to the n-carboxylic acid with the number of
carbon ranging from 2 to 14 and the 54 kinds of organic
solvents. It is easy to apply the present method to arbitrary
sized systems and give a transferable atom-based partition
coefficient.

1 Introduction
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The partition coefficient (P) is an important parameter which
represents the ratio of the solubility between polar and apolar
phases, such as the water and n-octanol. (see Figure 1) The
logarithm of partition coefficient, i.e., logP, is usually taken as
an indicator for screening out promising drug and material can-
didates in environmental science1 and pharmacology.2,3 Among
some theoretical models, the logP parameter is also associated
with other molecular properties, such as the aqueous solubility
(logS),4–6 the distribution coefficient (logD),7,8 and Lipophilic
Efficiency (LiPE).9 It was demonstrated that entropy may con-
tribute to significant changes in the solubility of the nanocrystal-
ligands complexes.10,11 In addition, in the polar phase, the solute
polarizability12 and polarity13 are much more sensitive to the
partition coefficient. The delicate balance between the entropy
and the polarity in transporting small drug from phase of water
to lipid was also revealed by our molecular dynamics (MD) sim-
ulations with both implicit and explicit polarization models .14

However, the time-consuming MD simulations of the solvation
equilibrium in both polar and non-polar phases are impossible
to realize the high-throughput screening of promising drugs and
material candidates. Thus, an efficient model for logP prediction
is highly desired to take the explicit polarization and entropy into
considerations.

Here, we proposed a descriptor encoding the polarization and
conformation entropy into the atom-centered symmetry functions
(ACSFs), named ⟨q − ACSFs⟩con f , and married it with a high-
dimensional neural network (HDNN), as shown in Figure 1. (A
detailed structure of HDNN could be found in supporting in-
formation) Comparing with the atomic-based or fragment-based
model15–22 and molecular descriptors based model,13,23–30 our
model features in the following three aspects: (i) bypassing the
laborious jobs in dividing the whole molecules into separate frag-
ments or atoms and constructing descriptors automatically; (ii)
no need for the various descriptors which may be difficult and
computationally costly to obtain; (iii) adding physically explain-
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Fig. 1 Schematic illustration of the workflow applied for (a) the collection of datasets, (b) derivation of the polarization and entropy, encoding
polarization and entropy into atom-centered symmetry functions (⟨q−ACSFs⟩con f ), (c) model building and partition coefficient prediction.

able elements by explicitly taking the polarization effects and con-
formation entropy into consideration.

2 Methods
Four public datasets (PhysProp,31 Martel,32 Star & NonStar,23

and Huuskonen33) were used for training and testing the HDNN
model with ⟨q − ACSFs⟩con f , as shown in Figure 1 and Figure
S1. Two homemade datasets (n-carboxylic acids and Solv-5434)
were adopted as an external test (Table S2). PhysProp database
is perhaps the biggest public collection of the experimental logP
data. It contains about 41039 molecular structures as SMILES
strings in total, 13553 of which were determined experimen-
tally and the rests were estimated. In Martel, 707 commer-
cial molecules were measured experimentally with high perfor-
mance liquid chromatography (HPLC) method. Star & Non-Star
database is composed of 266 molecules, 223 of which were picked
from BioByte StarList35 for the development of various logP esti-
mation methods. The other 43 molecules were collected outside
of BioByte StarList. Huuskonen database contains a diverse set of
1870 organic molecules.

In the present work, we studied logP of organic molecules of
top four abundance of chemical elements, namely, H, C, N, O. As
shown in Figure S1(a), the normalized abundance of H, C, N, O is
quit similar and the abundance of element H is the highest. The
logP distribution of the six public databases ranges from −2 to 7,
as shown in Figure S1(b).

To show the entropic effect on partition coefficient measured
experimentally (logPexp), we fetched experimentally measured
entropy and partition coefficient of 14 molecules that commonly
utilized as the solvents and ligands coated with CdSe nanocrys-
tals10,11 (shown in Figure 2(a)). It is interesting to find a relation-
ship between the experimental partition coefficient (logPexp) and
the experimentally measured entropy (Figure 2(b)) and calcu-

lated entropy by the density functional theory (DFT) at the level
of b3lyp/6-31g(d) (Figure 2(c,d)). A closer look at the individual
contribution to entropy gives a conclusion that contribution from
vibration increased a lot when partition coefficient increases (Fig-
ure 2(d)). It is necessary to introduce the entropy effects from the
low frequency vibrations into logP prediction. The conformations
of entropic significance were sampled from molecular dynamics
(MD) simulations, the simulation details could be found in sup-
porting information. Subsequently, we encoded conformation en-
tropy and polarization into the conventional atom-centered sym-
metry functions (ACSFs). Starting from ACSFs (see eq. S1 - eq.
S3), the resulting radial and angular symmetry functions in po-
larization weighted ACSFs (q−ACSFs) are expressed in eq. 1 and
eq. 2, respectively.

Qrad
i =

N

∑
j ̸=i

g(q j)e−η(Ri j−Rs)
2

fc(Ri j) (1)

Qang
i = 21−ζ

all

∑
j,k ̸=i

h(q j,qk)(1+λ cos(θi jk))
ζ × e−η(R2

i j+R2
ik+R2

jk)

× fc(Ri j) fc(Rik) fc(R jk)

(2)

g(q j) and h(q j,qk) are two weighting functions, where both of
them are functions of atomic charge (q) of atom j and k. Although
the weighting function could take various different definitions,
we took the following forms in this work.

g(q j) = q j (3)

h(q j,qk) = q jqk (4)

When considering the entropy effects, the atom-centered sym-
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Fig. 2 (a) The selected molecules for building the correlation between the partition coefficient logP measured experimentally and the entropy (S)
extracted from experiments (b), the total entropy (SQM

total) (c) calculated by quantum mechanism (QM), and individual entropy (d) came from three
distinct contributions namely, vibrational motion (SQM

vib ), translation motion (SQM
trans), and rotational motion (SQM

rot ) colored in black, red and blue,
respectively. Their corresponding experimental entropy were shown in parentheses in the unit of J ·mol−1K−1. More details could be found in Table
S3.

metry functions could be denoted as ⟨q−ACSFs⟩con f , where the
radial and angular symmetry functions were expressed as below:

⟨Qrad
i ⟩=

N

∑
a=1

pa{Qrad
i } (5)

⟨Qang
i ⟩=

N

∑
a=1

pa{Qang
i } (6)

where N is the number of conformations we selected, pa is the
Boltzmann distribution probability that conformation a could ap-
pear.

With the help of the high-dimensional neural network, the total
logP is the summation over the i-th individual atom, logPi, and
the mathematical form could be expressed as below:

logP =
Natoms

∑
i

logPi (7)

where Natoms is the total atom numbers of a molecule.
The individual contribution (logPi) was derived from an atomic

neural network, depending on the local chemical environments
surrounding the i-th atom with two sets of symmetry functions,
⟨Qrad

i ⟩ and ⟨Qang
i ⟩. As shown in Figure 1, artificial neural net-

work is composed of 3 parts, namely, input layer, hidden layer
and output layer. There could be one or more hidden layer in
a single network, and the mathematical flexibility between the
input and output increased when more hidden layers and more
nodes were applied in each hidden layer. A more detailed exam-
ple and mathematical expression could be found in supporting
information (Figure S4).

3 Results and Discussion
To demonstrate the importance of the polarization effects, we

firstly generated 100 simple descriptors with RDKit,36 and eval-
uated the contributions of each descriptors to the prediction of
partition coefficient with two distinct methods, namely, univariate
feature selection and mean decrease in impurity (MDI). The full
list of the descriptors and details of two feature selection methods
could be found in supporting information (Table S1). In Figure S3
(a), top 20 ranked descriptors utilizing the MDI were presented
and the importance of single descriptor is reflected by the percent-
age ratio. We further classified the descriptors into charge related
and non-charge related ones. From it, we could draw a conclu-
sion that the partition coefficient are highly related to the charge,
as the electrostatic or polarization related descriptors account for
74 % among the top 20 descriptors, and the most important de-
scriptor is PEOE −V SA6, which reflects the direct electrostatic
interactions hybrid with the surface area. Same picture was also
drawn with the help of univariate feature selection (Figure S3
(b)).

To visualize the effects on the introduction of partial charge
into the atom-centered symmetry functions (Figure 3(a)), here,
we took the water molecule as an example and utilized Gasteiger
partial charge.38 Firstly, we simply mapped the partial charge into
a water molecule, as shown in Figure 3(b), consistent with our
chemical intuition, atom O possesses negative values (blue re-
gion) and atom H of positive values (red region). In addition,
the density around atom O is much more dense than atom H, as
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Table 1 Performance of different logP methods over three datasets

Martel Star&Non-Star Huuskonen
MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

XLOGP3 0.97 1.60 1.26 0.45 0.36 0.60 0.32 0.20 0.45
MolLogP 1.06 1.93 1.39 0.56 0.46 0.68 0.46 0.36 0.60

ALOGPS 2.1 1.02 1.68 1.30 0.41 0.32 0.56 0.31 0.26 0.51
JPlogP-Coeff 0.93 1.49 1.22 0.57 0.51 0.72 0.40 0.29 0.54

JPlogP-librarya 0.90 1.42 1.19 - - - - - -
⟨ACSFs⟩con f 0.97 1.66 1.29 0.83 1.27 1.13 0.54 0.53 0.73

ACSFsmax 0.96 1.60 1.27 0.82 1.27 1.13 0.54 0.53 0.73
⟨q−ACSFs⟩con f 0.91 1.50 1.23 0.48 0.44 0.66 0.22 0.12 0.35

q−ACSFsmax 0.90 1.53 1.23 0.54 0.54 0.74 0.22 0.13 0.37
a Results derived from ref, 37 where the estimation shown here was performed over molecules containing

element C, H, O and N.

Fig. 3 Importance of polarization effects. (a)Mathematical expression
of radial (Grad) and angular related (Gang) descriptors ; (b) Distribution
of Gasteiger partial charge mapped onto atom O and H; (c) Radial (c.f.,
eq. 1) and (d)-(e) angular (c.f., eq. 2) symmetry functions of water with
atomic charges all set to be 1; (f) Radial and (g)-(h) radial and (h)-(i)
angular symmetry functions of water scaled by each atomic charge qi.
The second and third columns differ in the sign of the phase parameter
λ . Blue denotes the negative value and red denotes the positive value.

the absolute partial charge on the atom O is twice larger than
atom H. When we ignored the polarization effect (c.f., eq. 3 and
eq. 4 where parameter q was set to be 1 for all atoms), the de-
scriptors drawn for atom O and H could not be well separated
and the sign of charge information was totally lost, as shown in
Figure 3(c) - Figure 3(e). For the angular symmetry functions,
with the phase parameter λ switched between +1 and −1, the
maximum intensity of the descriptors shifted from atom H to O
(Figure 3(d) and Figure 3(e)). It is a compensate, hence, we uti-
lized both values to obtain good descriptors at different values of
θi jk. However, when the partial charge was embedded in the gen-

eration of the descriptors, significant changes were observed both
in the radial (Figure 3(f)) and angular (Figure 3(g) and Figure
3(h)) symmetry functions and signs of descriptors on atom O and
H are all opposite. In addition, the value of descriptors on atom
O are positive compared with the partial charge of atom O, this
phenomenon is resulted from that the value of descriptor on atom
O are summation of surrounding environments (Figure 3(a) and
eq. 1 and eq. 2). Here, the atom H is embedded into the gen-
eration of descriptor on atom O and vice verse for the generation
of descriptor for atom H. In Table 1, great improvement was ob-
served with introduction of charge information over three public
datasets.

To further disclose the effects of entropy, we proposed another
descriptor which only takes the most probable structure into con-
sideration and called it q − ACSFsmax. As shown in Figure 4,
we presented the relationship between the number of rotatable
bonds and root-mean-square deviation (RMSD) of trajectories
generated from molecular dynamics simulations, from which high
correlation was observed. A molecule with the highest number
of rotatable bonds among PhysProp was detailed. The confor-
mations generated by MD were grouped into three clusters ac-
cording to their structural similarity. Details could be found in
supporting information. Each cluster is colored separately. From
the distribution of the potential energy, we could see that three
representative structures, namely, cross, parallel, and ring-like,
(the dotted lines and the five point star) could almost cover the
whole range. A subsequent principle component analysis also dis-
closed that 3 clusters may be sufficient as the top 3 principle com-
ponents account for 65.3 % of the whole systems (Figure S2).
The distribution of the number of rotatable bonds and RMSD
for four distinct datasets was also drawn, a sharp peak was ob-
served in the datasets PhysProp, Martel and Huuskonen (Figure
4 (a)-(c)). A somehow wide distribution (RMSD ranges from 0
to 0.5 and number of rotatable bonds ranges from 0 to 30) was
observed in datasets Star & Non-Star. As a consequence, com-
pared with model q−ACSFsmax, a distinct improvement of MAE
and MSE was achieved over dataset Star & Non-Star using model
⟨q−ACSFs⟩con f , while little differences were observed in other
two datasets (Table 1). This phenomenon may contribute to the
broad space sampled in dataset Star & Non-Star and point out the
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Fig. 4 Correlation between the number of rotatable bonds and the root-mean-square deviations (RMSD) derived from the 1 ns MD trajectories among
four public datasets, namely, (a) PhysProp, (b) Martel, (c) Huuskonen, and (d) Star & Non-Star. Three clusters of molecule C30H53O11N2 were
grouped from the molecular dynamics simulations with the help of the similarity map. Each cluster is represented in a separate color. Among the
trajectories, their representative potentials were drawn in five-pointed star. The representative conformations, namely, cross (colored in blue), parallel
(red) and ring-like (green) were shown in the upper right panel together with their potential and probability.

direction for further increasing the model accuracy.

Performance of ⟨q−ACSFs⟩con f was fully asssessed over three
distinct datasets through MAE and MSE. Detailed definition of
the criterion could be found in supporting information. Five
methods, namely, XLOGP316, MolLogP18, ALOGPS 2.119, JPlogP-
Coeff37 and JPlogP-library37 were also applied for comparison.
As listed in Table 1, the performances of predicting the partition
coefficient in the datasets Martel were less satisfactory over these
five methods, as the distribution of partition coefficient is quit
different from the one we trained on (Figure S1(b)). However,
among them, ⟨q−ACSFs⟩con f outperforms these methods except
for JPlogP-library, as the MAE and MSE could decreased to 0.91
and 1.50, respectively. While for the method MolLogP, the MAE
and MSE are up to 1.06 and 1.93. Among the datasets Star &
Non-Star, the performance of ⟨q−ACSFs⟩con f is almost the same
as the XLOGP3. The MAE and MSE predicted by ⟨q−ACSFs⟩con f

are only 0.22 and 0.12 over datasets Huuskonen, which is a great
improvement with considering both polarization and entropy ef-
fects. The present model highlights the advantage of non-need to
pre-define types of atom or fragment and applicability to any type
of molecules with appropriately formulated data.

To further survey the effect of partial charge and conformations
of energetic and entropic significance, we trained different repre-
sentations with the same procedure and test their performances
on the same datasets. As shown in Table 1, introduction of partial
charge into the ACSFs, great improvements could be achieved.
For example, when scaling all partial charge to 1, the MAE (MSE)
of ⟨ACSFs⟩con f is 0.97(1.66), 0.83(1.27) and 0.54(0.53) among

datasets Martel, Star & Non-Star, and Huuskonen, respectively.
However, when taking the charge effects, MAE (MSE) of the
⟨q−ACSFs⟩con f could be decreased to 0.91(1.50), 0.48(0.44), and
0.22(0.12) for datasets Martel, Star & Non-Star and Huuskonen,
respectively. For datasets Star & Non-Star and Huuskonen, the de-
crease of MAE(MSE) from 0.83(1.27) and 0.54(0.53) to 0.48(0.44)
and 0.22(0.12) was observed, respectively. In the term of confor-
mation effects, we could see that the performance differs a little
among all three datasets. The vanish of the improvement over
dataset Star & Non-Star further demonstrates the significance of
both polarization and entropy.

To get a more reliable and robust model, here, we trained it
over four public datasets and test it over two homemade datasets,
namely, n-carboxylic acids and Solv-54 (Table S2). As shown
in Figure 5 (a), with the chain length increasing, more flexible
are the molecules which may attribute to entropic significance.
Our model could well reproduce the trends. In Solv-54, po-
lar molecules such as the alcohols were highlighted and drawn
in five-point stars. As shown in Figure 5 (b), more hydroxyl
functional groups molecule contains, stronger interaction with
phase of water was expected which results in lower partition co-
efficient. For example, molecule 3,6,9-trioxa-undecan-1,11-diol
(exp: −2.02) and ethane-1,2-diol (exp: −1.36) which contain
two polar hydroxyl groups possess much lower partition coeffi-
cient among datasets Solv-54. Although the diversity of the com-
pounds, good prediction was achieved especially in the aspect of
conformational entropy and polarity.

Benefit from the high-dimensional neural network (HDNN) and
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Fig. 5 Performance of the predicted partition coefficient (logPpred) by
charge and ensemble weighted atom-center symmetry functions (⟨q −
ACSFs⟩con f ) over two homemade datasets, namely (a) n-carboxylic acids
and (b) Solv-54, inserted are polar molecules such as alcohols indicated
by the five-pointed star colored in orange.

atom-center symmetry functions (ACSFs), ⟨q − ACSFs⟩con f not
only could be able to give a partition coefficient for a single
molecule, but also has the ability for deriving the contribution
from a single atom, as our input is only dependent on the ele-
ment and the surrounding environments. As a consequence, we
decomposed the partition coefficient of all the molecules into sin-
gle atoms and analyzed over three datasets. As shown in Figure 6,
the values of contribution from single atom C ranges from −0.2
to 0.7, and they mainly concentrated above 0 which is guided
by the black dashed line. For atom O and atom N, the val-
ues are almost negative. Same conclusion could be drawn from
datasets Martel and Huuskonen (middle and right panel of Figure
6). Intriguingly, this phenomenon is consistent with the simple
model proposed by Mannhold where the partition coefficient is
only related to the number of carbon atoms (NC) and number of
hetero atoms (NHET ) (logP = 1.46(±0.02) + 0.11(±0.001)NC −
0.11(±0.001)NHET ).23 When digging deep into the contribution
from the element H, we found that the peak of the distribution
is in accordance with the dashed line at 0, which means in some
situations, it increased the partition coefficient, while decreased
in the resting situations. Further analyses on dividing the contri-
bution of each atoms according to the surrounding environments
could be found in Figure S5-S8 and Table S10. From Figure S5
and Table S10, we could see that atom H prefers to increase the
partition coefficient when bonding with atom C independent of
hybridization methods. To the contrary, when bonding with het-
ero atoms, atom H prefers to decrease the partition coefficient.

4 Conclusions and Perspectives
In summary, we designed a new descriptor based on the con-

ventional atom-centered symmetry functions (ACSFs) and we
called it ⟨q−ACSFs⟩con f . Polarization and entropy effects were
treated explicitly by introducing the partial charges derived di-
rectly from force field and conformations of energetic and en-
tropic significance sampled from molecular dynamics simulations.
Different from atom- or fragment-additive models, our model do
not need to pre-define the types of atom or fragment and could
bypass the pitfall of missing atoms or fragments. In addition,
no prior knowledge was introduced in our model compared with

Fig. 6 Partition coefficient decomposed into contribution from each
atom of a single molecule. Dashed guide line at 0 is shown here, where
the contributions from left are to decrease the partition coefficient, right
for increasing it. The colors are in line with the molecule throughout the
manuscript.

some models which need pre-calculated molecular descriptors.
We further tested the effects of polarization and entropy on model
performance, results and feature selection showed that the polar-
ization is important in the prediction of partition coefficient, and
significant improvement could be achieved on dataset Star & Non-
Star (MAE decreased from 0.83 to 0.48)and Huuskonen (MAE
decreased from 0.54 to 0.22). Just a slight improvement was ob-
served for the introduction of different conformations, which may
attribute to the conformational space we sampled is insufficient.
As a result, to better improve the accuracy of the model, much
more emphasis should be laid on the technology of enhanced
sampling methods, especially for the target-free methods, such
as the metadynamics,39 umbrella sampling,40 DAta-Driven ac-
celeration method41,42 and so on. Some progress is still being
made in our lab. In addition, inheriting the advantage of atom-
centered symmetry functions, ⟨q−ACSFs⟩con f has the ability to
decompose the partition coefficient into each atoms. Interest-
ingly, when we statistically analyzed the contributions from four
distinct elements, we found that the contribution from element
C are almost positive, while negative for the element O and N,
the main conclusion is consistent with the linear model proposed
previously.23 The present study supplies a new strategy for the
prediction of partition coefficient and other physical properties,
such as the distribution coefficient and aqueous solubility, in the
drug and materials design.
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